Calculate tree balance index J1
(when nonRootDominance = FALSE
) or
J1c
(when nonRootDominance = TRUE
) from Lemant2022TreeTools.
Arguments
- tree
Either an object of class 'phylo', or a dataframe with column names Parent, Identity and (optionally) Population. The latter is similar to
tree$edge
, where tree is an object of class 'phylo'; the differences are in class (data.frame versus matrix) and column names. The dataframe may (but isn't required to) include a row for the root node. If population sizes are omitted then internal nodes will be assigned population size zero and leaves will be assigned population size one.- q
Numeric between zero and one specifying sensitivity to type frequencies. If
q < 1
, the Jq index - based on generalized entropy - will be returned; see Lemant2022;textualTreeTools, page 1223.- nonRootDominance
Logical specifying whether to use non-root dominance factor.
Details
If population sizes are not provided, then the function assigns size 0 to internal nodes, and size 1 to leaves.
See also
Other tree characterization functions:
CladisticInfo()
,
Consensus()
,
Stemwardness
,
TotalCopheneticIndex()
Examples
# Using phylo object as input:
phylo_tree <- read.tree(text="((a:0.1)A:0.5,(b1:0.2,b2:0.1)B:0.2);")
J1Index(phylo_tree)
#> [1] 0.7924813
phylo_tree2 <- read.tree(text='((A, B), ((C, D), (E, F)));')
J1Index(phylo_tree2)
#> [1] 0.9693609
# Using edges lists as input:
tree1 <- data.frame(Parent = c(1, 1, 1, 1, 2, 3, 4),
Identity = 1:7,
Population = c(1, rep(5, 6)))
J1Index(tree1)
#> [1] 0.6666667
tree2 <- data.frame(Parent = c(1, 1, 1, 1, 2, 3, 4),
Identity = 1:7,
Population = c(rep(0, 4), rep(1, 3)))
J1Index(tree2)
#> [1] 0.5
tree3 <- data.frame(Parent = c(1, 1, 1, 1, 2, 3, 4),
Identity = 1:7,
Population = c(0, rep(1, 3), rep(0, 3)))
J1Index(tree3)
#> [1] 1
cat_tree <- data.frame(Parent = c(1, 1:14, 1:15, 15),
Identity = 1:31,
Population = c(rep(0, 15), rep(1, 16)))
J1Index(cat_tree)
#> [1] 0.4740741
# If population sizes are omitted then internal nodes are assigned population
# size zero and leaves are assigned population size one:
sym_tree1 <- data.frame(Parent = c(1, rep(1:15, each = 2)),
Identity = 1:31,
Population = c(rep(0, 15), rep(1, 16)))
# Equivalently:
sym_tree2 <- data.frame(Parent = c(1, rep(1:15, each = 2)),
Identity = 1:31)
J1Index(sym_tree1)
#> [1] 1
J1Index(sym_tree2)
#> [1] 1