NNI()performs a single iteration of the nearest-neighbour interchange algorithm; RootedNNI() retains the position of the root. These functions are based on equivalents in the 'phangorn' package. cNNI() is an equivalent function coded in C, that runs much faster.

NNI(tree, edgeToBreak = NULL)

cNNI(tree, edgeToBreak = NULL, whichSwitch = NULL)

NNISwap(parent, child, nTips = (length(parent)/2L) + 1L, edgeToBreak = NULL)

RootedNNI(tree, edgeToBreak = NULL)

RootedNNISwap(
  parent,
  child,
  nTips = (length(parent)/2L) + 1L,
  edgeToBreak = NULL
)

Arguments

tree

A tree of class phylo.

edgeToBreak

In (Rooted)NNI(), an optional integer specifying the index of an edge to bisect/prune, generated randomly if not specified. If -1, a complete list of all trees one step from the input tree will be returned. In cNNI(), an integer from zero to nEdge(tree) - nTip(tree) - 2, specifying which internal edge to break.

whichSwitch

Integer from zero to one, specifying which way to re-build the broken internal edge.

parent

Integer vector corresponding to the first column of the edge matrix of a tree of class phylo, i.e. tree$edge[, 1].

child

Integer vector corresponding to the second column of the edge matrix of a tree of class phylo, i.e. tree$edge[, 2].

nTips

(optional) Number of tips.

Value

Returns a tree with class phylo (if returnAll = FALSE) or a set of trees, with class multiPhylo (if returnAll = TRUE). cNNI() returns a tree of class phylo, rooted on the same leaf, on which the specified rearrangement has been conducted. NNISwap() returns a list containing two elements, corresponding in turn to the rearranged parent and child parameters. a list containing two elements, corresponding in turn to the rearranged parent and child parameters

Details

Branch lengths are not supported.

All nodes in a tree must be bifurcating; ape::collapse.singles() and ape::multi2di() may help.

Functions

  • NNISwap: faster version that takes and returns parent and child parameters

  • RootedNNI: Perform NNI rearrangement, retaining position of root

  • RootedNNISwap: faster version that takes and returns parent and child parameters

References

The algorithm is summarized in Felsenstein J (2004). Inferring phylogenies. Sinauer Associates, Sunderland, Massachusetts.

See also

Other tree rearrangement functions: SPR(), TBR()

Examples

tree <- TreeTools::BalancedTree(8)
# A random rearrangement
NNI(tree)
#> 
#> Phylogenetic tree with 8 tips and 7 internal nodes.
#> 
#> Tip labels:
#>   t1, t2, t3, t4, t5, t6, ...
#> 
#> Rooted; no branch lengths.
cNNI(tree)
#> 
#> Phylogenetic tree with 8 tips and 7 internal nodes.
#> 
#> Tip labels:
#>   t1, t2, t3, t4, t5, t6, ...
#> 
#> Rooted; no branch lengths.

# All trees one NNI rearrangement away
NNI(tree, edgeToBreak = -1)
#> 12 phylogenetic trees

# Manual random sampling
cNNI(tree, sample.int(14 - 8 - 1, 1), sample.int(2, 1))
#> 
#> Phylogenetic tree with 8 tips and 7 internal nodes.
#> 
#> Tip labels:
#>   t1, t2, t3, t4, t5, t6, ...
#> 
#> Rooted; no branch lengths.

# A specified rearrangement
cNNI(tree, 0, 0)
#> 
#> Phylogenetic tree with 8 tips and 7 internal nodes.
#> 
#> Tip labels:
#>   t1, t2, t3, t4, t5, t6, ...
#> 
#> Rooted; no branch lengths.

# If a tree may not be binary, collapse nodes with
tree <- TreeTools::MakeTreeBinary(tree)

# If a tree may be improperly rooted, use
tree <- TreeTools::RootTree(tree, 1)

# If a tree may exhibit unusual node ordering, this can be addressed with
tree <- TreeTools::Preorder(tree)