Use the approach of Li1996;textualTreeDist to approximate the Nearest Neighbour Interchange distance Robinson1971TreeDist between phylogenetic trees.
Value
NNIDist()
returns, for each pair of trees, a named vector
containing three integers:
lower
is a lower bound on the NNI distance, and corresponds to the RF distance between the trees.tight_upper
is an upper bound on the distance, based on calculated maximum diameters for trees with < 13 leaves. NA is returned if trees are too different to employ this approach.loose_upper
is a looser upper bound on the distance, using n log n + O(n).
NNIDiameter()
returns a matrix specifying (bounds on) the diameter
of the NNI distance metric on the specified tree(s).
Columns correspond to:
liMin
: $$n - 3$$, a lower bound on the diameter (Li et al. 1996);fackMin
: Lower bound on diameter following Fack et al. (2002), i.e. $$\log2{N!} / 4$$;min
: The larger ofliMin
andfackMin
;exact
: The exact value of the diameter, where n < 13;liMax
: Upper bound on diameter following Li et al. (1996), i.e. $$n \log2{n} + \textrm{O}(n)$$;fackMax
: Upper bound on diameter following Fack et al. (2002), i.e. ($$N - 2$$) ceiling($$\log2{n}$$)N;
max
: The smaller ofliMax
andfackMax
;
where n is the number of leaves, and N the number of internal nodes, i.e. $$n - 2$$.
Details
In brief, this approximation algorithm works by identifying edges in one tree that do not match edges in the second. Each of these edges must undergo at least one NNI operation in order to reconcile the trees. Edges that match in both trees need never undergo an NNI operation, and divide each tree into smaller regions. By "cutting" matched edges into two, a tree can be divided into a number of regions that solely comprise unmatched edges.
These regions can be viewed as separate trees that need to be reconciled.
One way to reconcile these trees is to conduct a series of NNI operations
that reduce a tree to a pectinate (caterpillar) tree, then to conduct an
analogue of the mergesort algorithm. This takes at most n log n + O(n)
NNI operations, and provides a loose upper bound on the NNI score.
The maximum number of moves for an n-leaf tree
(OEIS A182136) can be calculated exactly for
small trees Fack2002TreeDist; this provides a tighter upper
bound, but is unavailable for n > 12.
NNIDiameter()
reports the limits on this bound.
Leaves: | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
Diameter: | 0 | 0 | 0 | 1 | 3 | 5 | 7 | 10 | 12 | 15 | 18 | 21 | ? |
See also
Other tree distances:
JaccardRobinsonFoulds()
,
KendallColijn()
,
MASTSize()
,
MatchingSplitDistance()
,
NyeSimilarity()
,
PathDist()
,
Robinson-Foulds
,
SPRDist()
,
TreeDistance()
Examples
library("TreeTools", quietly = TRUE)
NNIDist(BalancedTree(7), PectinateTree(7))
#> lower best_lower tight_upper best_upper loose_upper fack_upper
#> 2 2 2 2 4 4
#> li_upper
#> 10
NNIDist(BalancedTree(7), as.phylo(0:2, 7))
#> [,1] [,2] [,3]
#> lower 4 3 4
#> best_lower 7 5 7
#> tight_upper 7 5 7
#> best_upper 7 5 7
#> loose_upper 14 8 14
#> fack_upper 14 8 14
#> li_upper 16 13 16
NNIDist(as.phylo(0:2, 7), PectinateTree(7))
#> [,1] [,2] [,3]
#> lower 4 4 4
#> best_lower 7 7 7
#> tight_upper 7 7 7
#> best_upper 7 7 7
#> loose_upper 14 14 14
#> fack_upper 14 14 14
#> li_upper 16 16 16
NNIDist(list(bal = BalancedTree(7), pec = PectinateTree(7)),
as.phylo(0:2, 7))
#> , , lower
#>
#> [,1] [,2] [,3]
#> bal 4 3 4
#> pec 4 4 4
#>
#> , , best_lower
#>
#> [,1] [,2] [,3]
#> bal 7 5 7
#> pec 7 7 7
#>
#> , , tight_upper
#>
#> [,1] [,2] [,3]
#> bal 7 5 7
#> pec 7 7 7
#>
#> , , best_upper
#>
#> [,1] [,2] [,3]
#> bal 7 5 7
#> pec 7 7 7
#>
#> , , loose_upper
#>
#> [,1] [,2] [,3]
#> bal 14 8 14
#> pec 14 14 14
#>
#> , , fack_upper
#>
#> [,1] [,2] [,3]
#> bal 14 8 14
#> pec 14 14 14
#>
#> , , li_upper
#>
#> [,1] [,2] [,3]
#> bal 16 13 16
#> pec 16 16 16
#>
CompareAll(as.phylo(30:33, 8), NNIDist)
#> $lower
#> 1 2 3 4
#> 1 1 1 2
#> 2 1 1 2
#> 3 1 1 2
#> 4 2 2 2
#>
#> $best_lower
#> 1 2 3 4
#> 1 1 1 3
#> 2 1 1 3
#> 3 1 1 3
#> 4 3 3 3
#>
#> $tight_upper
#> 1 2 3 4
#> 1 1 1 3
#> 2 1 1 3
#> 3 1 1 3
#> 4 3 3 3
#>
#> $best_upper
#> 1 2 3 4
#> 1 1 1 3
#> 2 1 1 3
#> 3 1 1 3
#> 4 3 3 3
#>
#> $loose_upper
#> 1 2 3 4
#> 1 2 2 5
#> 2 2 2 5
#> 3 2 2 5
#> 4 5 5 5
#>
#> $fack_upper
#> 1 2 3 4
#> 1 2 2 5
#> 2 2 2 5
#> 3 2 2 5
#> 4 5 5 5
#>
#> $li_upper
#> 1 2 3 4
#> 1 5 5 8
#> 2 5 5 8
#> 3 5 5 8
#> 4 8 8 8
#>